WaDE: Watershed Dynamics and Evolution

Advancing predictive understanding of how dominant processes controlling watershed hydro-biogeochemical function operate under a range of hydrologic regimes and vary along stream networks that drain heterogeneous land covers

What are we researching?

Watershed through forest and town.

Theme 1
Dynamic Headwaters

Stream corridor process; carbon dioxide and oxygen interacting with plants and water.

Theme 2
Stream Corridor Processes

Overlay of graph on watershed.

Theme 3
Network Function

Virtual model of watershed.

Theme 4
Modeling Crosscut

The Tennessee River Basin in the southeastern United States is the most intensively used freshwater water resource region in the contiguous United States, supporting approximately 4.5 million people with estimated withdrawals of more than 280,000 gallons per day per square mile.

Water resources in the Tennessee River Basin and broader southeastern region are vulnerable to changes in land use and land cover and a range of climate-induced disturbances. Projections indicate that the southeastern United States will experience higher temperatures, more extreme heat events, and an intensifying hydrologic cycle with more frequent and severe storm and drought events over time.

To address these changes, the Watershed Dynamics and Evolution (WaDE) Science Focus Area (SFA) at the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) will advance predictive understanding of how dominant processes controlling watershed hydro-biogeochemical function operate under a range of hydrologic regimes and vary along stream networks that drain heterogeneous land covers.

News Articles

Student intern stands in creek

August 22, 2023 100 Next-gen Scientists Intern with Environmental Scientists at ORNL

View +

View more
Student working in lab

March 2, 2023 University-ORNL Collaborations Broaden Student Research Opportunities

View +

View more

Research Highlights

April 28, 2023 Geoelectric Characterization of Hyporheic Exchange Flow in the Bedrock-Line

View +

View more

April 21, 2023 Improving Streamflow Projections in Changing Climate Conditions

View +

View more

March 28, 2023 Nitrous Oxide Inhibits Methylmercury and Methane Formation in Arctic Tundra

View +

View more


202310.1029/2022WR032736Ward, A. S., S. M. Wondzell, M. N. Gooseff, T. Covino, S. Herzog, B. McGlynn and R. A. PaynBreaking the Window of Detection: Using Multi-Scale Solute Tracer Studies to Assess Mass Recovery at the Detection LimitWater Resources Research59(3) e2022WR032736
202210.1002/hyp.14570Wondzell, S. M. and A. S. WardThe channel-source hypothesis: Empirical evidence for in-channel sourcing of dissolved organic carbon to explain hysteresis in a headwater mountain streamHydrological Processes36(5) e14570
202310.1007/s00216-022-04468-8Crowther, E. R., J. D. Demers, J. D. Blum, S. C. Brooks and M. W. JohnsonCoupling of nitric acid digestion and anion-exchange resin separation for the determination of methylmercury isotopic composition within organismsAnalytical and Bioanalytical Chemistry415(5) 759–74
202310.1039/D1EM00549AKoenigsmark, F., M. Chiu, N. Rivera, A. Johs, J. Eskelsen, D. Leonard, B. K. Robertson, A. Szynkiewicz, C. Derolph, L. Zhao, B. Gu, H. Hsu-Kim and E. M. PierceCrystal lattice defects in nanocrystalline metacinnabar in contaminated streambank soils suggest a role for biogenic sulfides in the formation of mercury sulfide phasesEnvironmental Science: Processes & Impacts25(3) 445–60
202310.3389/frwa.2023.1005792Buser-Young, J. Z., P. E. Garcia, M. O. Schrenk, P. J. Regier, N. D. Ward, K. Biçe, S. C. Brooks, E. C. Freeman and C. LønborgDetermining the biogeochemical transformations of organic matter composition in rivers using molecular signaturesFrontiers in Water5
202210.1039/D2EM00142JBrooks, S. C., A. L. Riscassi, C. L. Miller, K. A. Lowe, X. Yin and T. L. MehlhornDiel mercury concentration variations in a mercury-impacted streamEnvironmental Science: Processes & Impacts24(8) 1195–211
202310.1021/acs.est.2c03633Li, H., B. Reinhart, S. Moller and E. HerndonEffects of C/Mn Ratios on the Sorption and Oxidative Degradation of Small Organic Molecules on Mn-OxidesEnvironmental Science & Technology57(1) 741–50
202310.1029/2022GL102616Ikard, S. J., K. C. Carroll, D. F. Rucker, R. F. Adams and S. C. BrooksGeoelectric Characterization of Hyporheic Exchange Flow in the Bedrock-Lined Streambed of East Fork Poplar Creek, Oak Ridge, TennesseeGeophysical Research Letters50(8) e2022GL102616
202310.1016/j.gca.2022.12.008Liang, X., A. Johs, M. J. Abernathy, J. Zhao, H. Du, P. Ku, L. Zhang, N. Zhu, X. Yin, S. Brooks, L. Zhao, R. Sarangi, E. M. Pierce and B. GuHigh methylation potential of mercury complexed with mixed thiolate ligands by Geobacter sulfurreducens PCAGeochimica et Cosmochimica Acta342 74–83
202210.1021/acsearthspacechem.1c00442Gu, X. and S. L. BrantleyHow Particle Size Influences Oxidation of Ancient Organic Matter during Weathering of Black ShaleACS Earth and Space Chemistry6(6) 1443–59
202310.1021/acs.est.2c09457Zhang, L., Y. Yin, Y. Sun, X. Liang, D. E. Graham, E. M. Pierce, F. E. Löffler and B. GuInhibition of Methylmercury and Methane Formation by Nitrous Oxide in Arctic Tundra Soil MicrocosmsEnvironmental Science & Technology57(14) 5655–65
202210.1016/j.envsoft.2022.105453Rathore, S. S., G. E. Schwartz, S. C. Brooks and S. L. PainterJoint estimation of biogeochemical model parameters from multiple experiments: A bayesian approach applied to mercury methylationEnvironmental Modelling & Software155 105453
202310.1016/j.apgeochem.2023.105617Wood, D. L., K. A. Cole, E. M. Herndon and D. M. SingerLime slurry treatment of soils developing on abandoned coal mine spoil: Linking contaminant transport from the micrometer to pedon-scaleApplied Geochemistry151 105617
202310.1029/2022WR033445Shaughnessy, A. R., M. J. Forgeng, T. Wen, X. Gu, J. D. Hemingway and S. L. BrantleyLinking Stream Chemistry to Subsurface Redox ArchitectureWater Resources Research59(5) e2022WR033445
202310.1016/j.soilbio.2023.108964Neupane, A., E. M. Herndon, T. Whitman, A. M. Faiia and S. JagadammaManganese effects on plant residue decomposition and carbon distribution in soil fractions depend on soil nitrogen availabilitySoil Biology and Biochemistry178 108964
202310.1016/j.jhydrol.2023.129670Le, P. V. V., S. S. Rathore and S. L. PainterA multiscale model for solute transport in stream corridors with unsteady flowJournal of Hydrology622 129670
202310.1029/2022GB007412Santos, F. and E. HerndonPlant-Soil Relationships Influence Observed Trends Between Manganese and Carbon Across BiomesGlobal Biogeochemical Cycles37(1) e2022GB007412
202310.1016/j.jhazmat.2022.130589Du, H., X. Gu, A. Johs, X. Yin, T. Spano, D. Wang, E. M. Pierce and B. GuSonochemical oxidation and stabilization of liquid elemental mercury in water and soilJournal of Hazardous Materials445 130589
202310.1029/2022WR032718Becker, P. S., A. S. Ward, S. P. Herzog and S. M. WondzellTesting Hidden Assumptions of Representativeness in Reach-Scale Studies of Hyporheic ExchangeWater Resources Research59(1) e2022WR032718
202210.1029/2022WR032018Tsai, C. H., D. F. Rucker, S. C. Brooks, T. Ginn and K. C. CarrollTransient Storage Model Parameter Optimization Using the Simulated Annealing MethodWater Resources Research58(7) e2022WR032018
202310.3389/frwa.2023.1150126Liu, S., D. Lu, S. L. Painter, N. A. Griffiths and E. M. PierceUncertainty quantification of machine learning models to improve streamflow prediction under changing climate and environmental conditionsFrontiers in Water5
202310.3389/frwa.2023.1147561Wymore, A. S., A. S. Ward, E. Wohl and J. W. HarveyViewing river corridors through the lens of critical zone scienceFrontiers in Water5